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Abstract: - The maximum permissible deflection values in design standards are determined subjectively and 

can thus be considered as fuzzy numbers. Using the finite element method, it has been found that the lateral 

deflection of a slender beam under major axis bending can be relatively high. Nonlinear load-deflection 

analysis was applied for the compilation of the presented numerical studies. The serviceability limit state of 

beams with initial imperfections was studied. The limit moment, which yields the deflection that is equal to the 

maximum permissible value, was defined. Fuzzy analysis of the limit moment was evaluated using the general 

extension principle. Slendernesses of members for which the attainment of the maximum permissible value of 

deflection is the deciding limit state for design were determined. 
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1 Introduction 
Building structures should be designed for strength 

and serviceability during their service life, namely 

without any significant functionality loss or 

necessity of excessive, and/or unforeseen 

maintenance.  

The basis of the design of steel structures is the 

safeguarding of their safety and reliability. The steel 

structures usually are slender, and require paying 

increased attention to stability problems. The 

analysis of ultimate limit states of slender steel 

members is based on calculation models in closed 

form [1, 2] or on finite element method [3, 4]. The 

influence of material and geometrical characteristics 

on the model output can be assessed by means of the 

advanced sensitivity analysis method, see, e.g., [1, 

5]. Advanced approaches analyse the reliability by 

applying numerical simulation methods of the 

Monte Carlo type [6]. 

The safeguarding of serviceability represents the 

second equally important part of the design. The 

evaluation of the serviceability limit state is 

important in particular in recent time when 

advanced nonlinear calculation methods enable to 

analyse the deformations of light steel structures [7]. 

Serviceability limit state design of structures 

includes factors such as deflection, cracking and 

excessive vibration, durability, overall stability, and 

fire resistance. Basic design criteria of applicability 

of statically stressed structures are connected with 

larger deflections, above all the occurrence of which 

in current service should not exceed the maximum 

permissible value of deflection (limits) specified by 

design standards [8, 9].  

The limit values of deflection are determined in a 

very subjective manner because they are connected 

with appearance of structure, contentment of users 

and serviceability but also with damage of surfaces 

or non-supporting members. The limit values of 

deflections are thus of subjective character, and they 

can be perceived as fuzzy numbers rather than as 

random numbers or fields.  

Typical exemplars are buckling and lateral-

torsional buckling of slender beams with initial 

imperfections. The design of slender beam 

according to ultimate limit states [8, 9] is based on 

buckling curves. In design standards, the assessment 

according to serviceability limit state has not the 

background as strong as ultimate limit state. 

The maximum permissible values of deflection 

associated with buckling are not specified at all by 

design standards for stability problems of buckling 

and lateral torsional buckling. Experimental 

research [10] have shown that the lateral deflection 

of slender imperfect beams under major axis 

bending may, in some cases, reach relatively high 

values. This problem will be studied, in the present 

article, using the software Ansys [11] and the 

nonlinear load-deflection analysis of the FEM [12]. 

The paper is divided into five sections including 

the introduction and conclusion. In the second 
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section the model, loading, boundary conditions and 

initial geometric imperfections are described. The 

third section discusses the calculation of limit 

deflection. In the fourth section the fuzzy analysis is 

presented. 

 

2 Problem Formulation 
The computational model is presented by a simply 

supported beam of a hot-rolled profile IPE220 and 

steel grade S235. The non-dimensional slenderness 

in lateral-torsional buckling LT  [8] was chosen 

within the interval 4,2.0LT . Since the beam 

length L is a function of this value, it was changed 

depending on the non-dimensional slenderness. The 

beam is loaded on both ends by equal bending 

moments M of the same magnitude and of opposite 

direction. This represents the case of pure bending. 

The load is applied by means of compression 

(tension) on the web p1 and flange p2 to determinate 

the sizes of loading effects p1 and p2. Equations (1) 

to (4) describe how the sizes of loading effects p1 

and p2 are calculated. Normal stress 
x

  has a linear 

distribution along the cross section due to bending; 

see Fig.1. The highest absolute value 
max,x

  is reached 

at the outer edges. 

 

 
 

Fig.1: Stress distribution and application of 

compression and tension at the end sections of the 

beam 
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The resultant moment M is given as the sum of 

moments M1 and M2 from the force couples F1 and 

F2. 
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The force F2, the point of action of which is on 

the central line of the flange, is given by multiplying 

the respective stress and flange area A2. 
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Substituting Eq. (3) into Eq. (2), the force F1 and 

pressures p1 and p2 [Nm
-1

] can then be subsequently 

determined as 
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Since the beam is hinged at both ends, the 

boundary conditions are considered according to [2, 

13] as follows 
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The beam was modelled in finite element 

software Ansys [11]. The model was created using 

shell element SHELL181 which is a 4-node 

structural element suitable for analyzing thin to 

moderately-thick shell structures. The pressure loads 

were applied using element SURF156. The 

geometric nonlinear solution was applied using the 

incremental Newton-Raphson iterative method. The 

linear elastic stress-strain relationship was used for 

steel. Residual stress was not considered. 

 

2.1 Initial Imperfections 
In calculation models, the influence of 

imperfections on the behavior of structures is 

considered in various ways, see, e.g., [14-15]. In 

general, imperfections can be considered as 

deterministic or random quantities [16]. In this 

work, the initial imperfections are considered as 

deterministic quantities.  
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The initial out-of-plain imperfection of the beam 

axis (in the xy plane, see Fig.2), is described by 

function 

 

0 sin
x

y e
L

 
  

 

,    (6) 

where e0 is the value of amplitude of initial 

curvature of the beam axis and given as e0 = L/1000 

[1]. In the case of an ideal straight beam, 

deformation in the xy plane does not occur as long 

as the bending moment M does not reach the critical 

value Mcr. Then the beam starts to deflect even in 

this plane and to rotate. When the axis of the beam 

has an initial curvature, it starts to deflect in the xy 

plane and rotate immediately after the application of 

loading M. An example of a finite element model 

created in Ansys software is depicted in Fig.3. 

 

 

Fig.2: Initial imperfection 

 

 

 

Fig.3: Finite element model from Ansys 

3 Beam deflections 
During loading the maximal deflection occurs in the 

middle of the span length x = L/2. The deflection 

value (or the vector deflection) u is calculated as the 

maximum of lengths |AA‘|, |BB‘|, |CC‘|, |DD‘|, see 

Fig.4. It is a function of the length L and the 

dimensions of cross section b, h and it is sought 

during calculation.  

 

 
 

Fig.4: Deflections of the cross section 

 

The deformation of any cross section in 

Lx ,0  can be described by the components of 

displacement on each axes ux, uy a uz, and by 

rotation of cross sections φx, φy a φz around these 

axes. For the cross section in the middle of span 

length the rotations φy a φz are negligible 
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But the deflection in the x-direction ux is not 

negligible because one end of the beam is free to 

deflect in the direction of axis x. Therefore, the 

cross sections are shifted on this axis as well. For 

the vector deflection u it can be written 
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Deflections 
yx

u
,  and 

zx
u

,  are calculated as 
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The non-dimensional slenderness LT  of the 

beams was considered within the interval 

4,2.0LT . Due to the relation between 

slenderness and length, the lengths are within the 

interval 42,5.0L . Together, 416 beams with the 

length increase of 0.5 m were created. For each 

value L, there is a corresponding value LT , see 

Eurocode 3. 

 

4 Fuzzy Analysis 
The application of fuzzy sets in the construction 

industry/civil engineering is undergoing significant 

development, particularly in areas involving 

multiple criteria decision making [17]. The 

application of fuzzy analysis to the verification of 

the reliability of the design of structures is most 

frequently focused on the serviceability [18] or the 

safety of structures [19].  

As the moment M increases from zero to Mmax, 

the deflection u increases from the initial value of 

e0 = L/1000 to umax. The limit moment Mlim will 

occur when maximal deflection umax is equal to the 

maximum permissible value of deflection ulim. As 

ulim is a fuzzy number, the limit moment Mlim is also 

a fuzzy number. ulim has a membership function 

 u
ulim

  =  (u, L/450, L/250, L/173), see Fig.5. 

 

 
 

Fig.5: Membership function of ulim 

 

The relationship (11) is based on the general 

extension principle and it was applied for the fuzzy 

analysis of membership function of fuzzy number 

Mlim [20, 21]. 
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The fuzzy analysis of two selected slendernesses 

is presented in Fig.6 and Fig.7. The support of Mlim 

is bounded by deflection values L/450 and L/173. 

These are considered to be the maximum vector 

deflections. The value of the centre of gravity 

(COG) of the area below the membership function is 

the defuzzified value.  

 

 
 

Fig.6: Fuzzy analysis Mlim of slenderness 0.4 

 

 
 

Fig.7: Fuzzy analysis Mlim of slenderness 1.2 

 

The fuzzy analysis Mlim for other non-

dimensional slendernesses is presented in Fig. 8. 
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Fig.8: Fuzzy analysis Mlim vs slendernesses 

 

The elastic resistance Rfy, see, e.g., [2], is plotted 

in Fig.8 as a black dash line. Its values correspond 

to the moment at which the yield strength is reached 

in the most stressed point.  

 

5 Conclusion 
The article was focused on a fuzzy analysis of the 

maximum moment Mlim at which the maximum 

permissible deflection ulim has been reached. A 

nonlinear dependence between the deformation and 

the loading moment was discovered. ulim is a 

subjectively chosen value. Thus it can be considered 

as a fuzzy number. Although ulim was considered as 

a linear symmetrical fuzzy number Λ, Mlim is not 

linear and symmetric anymore, see Fig.7 and Fig.8.  

The defuzzified values (COG) are greater than 

the kernel for 865.0LT  (L   2.7m). The biggest 

difference between COG and the kernel is reached 

for the lowest values of slenderness. From the 

slenderness 865.0LT  the COG values are lower 

than the kernel, and the difference becomes more 

significant with increasing value of LT .  

It has been found out from the numerical studies 

that the lateral deflections (y axis) are substantially 

smaller than those in the vertical plane (z axis) for 

lower slenderness 6.0LT . With increasing value 

of slenderness, the lateral deformations increase as 

well. Lateral and vertical deformations are 

approximately the same for 0.2LT .  

The yield strength is a random variable that is 

evaluated experimentally [22]. The elastic resistance 

Rfy is the physical limit of the moment M above 

which there is an objective reduction in safety due 

to initialization of permanent deformations. The 

curve of Rfy intersects the curve of the COG at the 

point 00.1LT  (L = 3.3 m). The difference 

between COG and Rfy decreases with increasing 

slenderness, and the difference is negligible for 

slenderness 976.0LT . 

It is not possible to make a general conclusion of 

comparison of COG and Rfy because Rfy was 

calculated from the characteristic value of yield 

strength fy = 235 MPa, and the initial curvature of 

the beam e0 was considered as a non-random value 

L/1000. However, Rfy can be more accurately 

considered as a fuzzy random variable because the 

yield strength fy and initial curvature of the beam e0 

are real random variables. The article provides 

topics intended for elaboration in further numerical 

studies of reliability analysis focused on the design 

of slender steel beam structures using stochastic 

methods and fuzzy logic. It also contributes to the 

discussions on the appropriateness of using fuzzy or 

stochastic approaches depending on the type of task. 

Studying serviceability limit state using stochastic 

methods cannot be considered sufficient, because 

the limit deformation in design standards are 

determined subjectively by humans. Fuzzy analysis 

is suitable in these cases. 
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